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Radiative effects of sub-mean free path liquid water 
variability observed in stratiform clouds 

Alexander Marshakl, Anthony Davis *, Warren Wiscombe, and Robert Cahalan 

NASA Goddard Space Flight Center, Climate & Radiation Branch, Greenbelt, Maryland 

Abstract. A unique 4-cm-resolution data set of stratocumulus cloud liquid water content (LWC) 
made possible, for the first time, the generation of credible models of cloud LWC down to 
centimeter-scales, well below the photon mean free path (mfp) which is typically tens of meters. 
These models are exploited to study the errors in the usual assumption of LWC homogeneity 
within three-dimensional (3D) radiative transfer grid boxes, by doing Monte Carlo computations 
for 30-m cubes resolved down to IO-cm scales. Cloud models with and without vertical variability 
are compared. We found that vertically homogeneous but horizontally variable cloud structure 
produces cloud radiation biases of 3-5% relative to the assumption of complete homogeneity. The 
addition of vertical variability similar to the horizontal variability reduces these biases well below 
1%. We therefore conclude that 3D cloud models resolved down to the mfp scale (20-30 m for 
marine stratocumulus clouds), with an incorrect assumption of homogeneity below that scale are 
sufficient for modeling radiative properties averaged over mfp and larger scales in both visible and 
near-infrared spectral regions. This conclusion is restricted to only the overcast cases. 

1. Introduction 

It is well recognized that any variability of cloud optical 
depth decreases the domain averaged radiation reflected from 

clouds; this is a direct consequence of the convexity of the 
reflectance as a function of optical depth, and it is expressed 
mathematically as 

R(rl) + R(z2) Tl +T2 

2 
I R(- 

2 1, (1) 

where R is reflected radiation and z is cloud optical depth. For 
marine stratocumulus (SC) clouds, the decrease in cloud albedo 
for a general circulation model (GCM)-scale grid (more than 
100 km by 100 km) is around IO-15% [Cahalan, 1994; 
Chambers et al., I997a; Barker, 19961. For homogeneous 

clouds to have the same albedo as inhomogeneous ones 
requires up to a 30% reduction in their cloud liquid water 
[Cahnlan, 19941. 

The extension of these results to small-scale satellite grids 
(e.g., 30 m for Landsat) is not obvious, however, because 
these scales are near the average photon mean free path (mfp) 
for solar radiation. As a matter of fact, (1) assumes that 
radiative transfer in each vertical column does not depend on 
that in other columns [Cuhalnn et al., 19941; that is, R(zl) is 
independent of ~2. This is of course not valid for small, less 
than photon mfp, scales where any change of 9.2 will necessary 
affect R(T,). 
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As far as we know, there are only a few studies that address 
the issue of sub-mfp variability in cloud-radiative properties. 
Stephens et al. [ 19911 and Davis ef al. [ 199Ia] show that 
ensemble-averaged direct transmittance deviates from the 

standard exponential behavior, as already remarked by 
Romanova [1975] for spatial averages. Indeed, the classic 
derivation of Beer’s law explicitly requires extinction to be 
constant. Conversely, Davis [I9921 shows that if ensemble- 
averaged direct transmittance is exponential for all distances, 
then the medium is necessarily homogeneous. As ,a result, 
photon free path is therefore exponentially distributed only in 
homogeneous media. 

More recently, Knyazikhin et al. [ 19981 applied radiative 
transfer to vegetation canopies with vertical structure 
simulated by the Cantor set [e.g., Mandelbrot, 19771. They 
found that as soon as the Cantor-set-like small-scale 
variability is taken into account, the canopy transmittance no 
longer follows Beer’s law; to force Beer’s law to work again, 
one needs to exponentiate the optical depth by I/D where 
D < 1 [Mandelbrof, 19771 is the fractal dimension of the 
Cantor set. 

Turning to multiple scattering, Cnhafan [1989], Gabriel et 

al. [1990], and Davis et al. [1990, 199la, b] performed 
numerical and/or analytical computations for cloud systems 
modeled with singular cascades. In such scale-invariant 
models, liquid water content (LWC) is concentrated onto a 
rather sparse subset of space; photons therefore visit many 
grid cells with small but variable extinction values between 
two scatterings. In all of these studies strong variability 
effects were found in the domain-averaged albedo. Ensemble- 
averaged results using nonfractal Markovian variability 
models lead to similar conclusions as soon as their parameters 
are tuned to yield extinction fluctuations at sub-mfp scales 
[Avaste and Vainikko, 1974; Titov, 1990; Malvagi et al., 

1993; Byrne et al., 19961. 
A “mean-field” approach to multiple scattering in media 

with sub-mfp variability is to use homogeneous plane-parallel 
theory but without the standard assumption of exponentially 
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distributed photon free paths. In this spirit, Barker [I9921 
uses an empirical probability density function (pdf) for 
extinction at each step in a numerical scheme, while Davis and 

Marshak [I9971 develop analytically the counterpart of 
asymptotic (7 >> 1) theory for Levy-stable pdfs. Both studies 
confirm the inequality (1) for domain/ensemble-averaged 
albedo, and the latter has recently received some experimental 
validation [Pfeilsticker, 19981. 

A majority of these investigations of radiative transfer in 
presence of sub-mfp variability are not grounded in physical 
reality. Indeed, the technology of cloud liquid LWC 
measurements [e.g., Albrecht ef al., 1988, 19951, plus high 
aircraft speeds, has prevented spatial resolution of better than 
10 m, and most LWC data has a true resolution of no better 
than 30 m due to inadequate sampling statistics. 

Lacking high spatial resolution data, it was necessary to 
make assumptions. The nearly universal assumption was 
homogeneity, which creates unnatural scale break in the power 
spectrum of LWC but which was thought to introduce 
negligible errors. The opposite assumption is the extreme 
form of variability; singular (multi)fractal cascades with 
extreme intermittency lead to significant effects on cloud 
radiation from sub-mfp variability. 

Recent 4-cm resolution measurements of LWC by Gerber et 

al.‘s [I9941 Particulate Volume Monitor (PVM) allowed us for 
the first time to asses whether either of these assumptions, 
complete homogeneity or extreme variability, are useful or 

whether a better assumption than either is necessary. Davis et 
al. [1998b] applied scale-by-scale analysis to Gerber’s data 
and found a strong centimeter-scale variability, which is 
consistent with Baker’s [I9921 earlier findings and the recent 
report of a strong preferential concentration of cloud droplets 
by Shaw et al. [1998]. Davis et al. [1998b] simulated the 
Gerber probe to see if the centimeter-scale fluctuations were 
merely an artifact of the finite size of the sampling volume and 
instrumental filtering and showed that Poissonian noise 
imposed on a homogeneous background cannot explain the 
increased variability, which therefore is considered to be 
physical. This effort makes it possible to generate credible 
models of cloud LWC all the way down to centimeter-scales, at 
least for marine Sc. 

In this paper, we restrict our focus to single stratus layers, 
but we justify our models for internal cloud structure with data. 
More precisely, we exploit our new understanding of sub-mfp 
LWC variability to study the error in the usual assumption of 
homogeneity in three-dimensional (3D) radiative transfer grid 
boxes, by doing Monte Carlo computations for 30-m adjacent 
cubes, resolved down to IO-cm scales, with LWC modeled 
according to the results of the Gerber probe analysis. Sections 
2 and 3 review the analysis of the high-resolution Gerber 
probe and indicate ways of generating 3D fractal cloud models 
based on this data. Section 4 shows the results of radiative 
transfer calculations for these modeled clouds and compares 
them with calculations for cloud models that assume 
homogeneous structure below a photon mfp. In section 5, we 
discuss our results in the light of a recent study on the general 
phenomenology of 3D radiative transfer [Davis et al., 1998a]. 
Concluding statements are made in section 6. 

2. Variability in Cloud LWC Data 

Analyzing LWC data obtained at an unprecedented 4-cm 
resolution [Gerber et al., 19941 during the Southern Ocean 

Cloud Experiment (SOCEX), Davis ef al. [ l998b] discovered a 
power-spectrum scale-break around 2-S m (Figure 1). This 
break separates two distinct scaling regimes: the first from 8 
cm (the inverse Nyquist frequency) to about 2-5 m and the 
second from 2-5 m to about 1 km. Fitting power laws to the 
two segments of the power spectrum in Figure 1 leads to two 
scale-invariant regimes: 

E(k) = 
{ 

k-Psmall, Psma,,= 094f0.10 (8 cm It-5 2 m) 
k-bkr~e 

9P t,,,,=l.62+0.07 (5 m <r-s 1.3 km) 
(2) 

The scale-break around 2-5 m is robust and appears also in the 
multifractal statistics such as singular measures and structure 
functions [Davis et al., 1994, l998b]. 

The l.3-km upper bound is neither statistically nor 
physically important; it is just the length of the smallest data 
set analyzed by Davis et al. [ 1998b]. Other cloud LWC data 
measured during First International Satellite Cloud 
Climatology Project Regional Experiment (FIRE) [Albrecht et 

al., 19881 and Atlantic Stratocumulus Transition Experiment 
(ASTEX) [Albrecht er al., 19951 field programs show a scale- 
invariant regime from lo-60 m to 30-50 km [Davis et al., 

1994, 19961. The large-scale spectral exponent Plarge in 

SOCEX data is in good agreement with spectral exponents in 
FIRE and ASTEX LWC data. 

Since Psmd~ 5 1 < Phrge9 the small scales show much more 
variability than would be obtained merely by extrapolating the 
large-scale behavior to small scales. This is consistent with 
Baker’s [ 19921 findings of strong centimeter-scale variability 
in droplet concentration using a specialized statistical 
analysis of cloud droplets arrival times in the Forward 
Scattering Spectrometer Probe (FSSP). Recently, Saw et al. 

[I9981 supported the hypothesis of a highly nonuniform 
concentration of cloud droplets at centimeter-scales based on 
the direct numerical simulations. 

scale r = l/k (m) 
3 2 1 0 _ 1 

I I 

40 I \ 
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log,W, L = 2’ 5 x (4 cm) = 1.3 km 

Figure 1. Ensemble-averaged wavenumber spectrum for 
cloud LWC data measured at 4-cm resolution during the SOCEX 
field program. The spectral exponent p for each scaling 
regime is estimated by fitting the ensemble-average E(k) to a 
power law. The ensemble average is obtained from 37 
independent intervals of length 1.3 km (215 points). A scale- 
break around 2-5 m is indicated. 
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In general, small-scale fluctuations can be caused by f; = (l-2/)) 2+(‘-‘1 (0 5 p < l/2, H > 0), (44 
Poissonian noise resulting from the finite sampling volume. 
To assess this effect on the observed small-scale variability, 

or equivalently 

Davis et a/. [ 1998b] simulated stochastically the mechanism 
for collecting cloud liquid water data by the Gerber probe. 

wp= ]'(]-2p) 2-W-l) t4b) 

They found that Poissonian fluctuations alone are not leads to Cahalan et al.‘s [ 19941 “bounded” cascade models. 
sufficient to explain the scale-break at 2-5 m and therefore to Note that here fi + 0 (W,(*) + 1) as i -+ -. The limit H + m 
reject the hypothesis of two distinct scaling regimes. Thus yields a Heaviside function, a single jump from 21, to 2(1-p) 
they conclude that the scale-break is more likely to be on the very first cascade step. The limit H + 0 leads back to a 
physical than instrumental; for a more detailed discussion in singular p-model. 
terms of cloud microphysics, we refer to H. Gerber (Spatial Since at each cascade step of a bounded model the size of the 
variability of cloud liquid water content, submitted to Journal jumps decreases, the bounded model is stochastically 
of the Atmospheric Sciences, 1998). continuous; as i -+ m, ‘p(x+r) + q(x) if r + 0. As a result, its 

spectral exponent is always larger than 1, 

3. Cloud Models 
~(H)=min{2H,l)+l>1,H~O (4c) 

The analysis of cloud LWC variability summarized above 
independently of p [Marshak et al., 19941. Unlike in a 

makes it possible to build credible cascade models of cloud 
p--model, here parameter p controls the variance of the model. 

LWC all the way down to centimeter scales. In this section we 
Note that in the limiting case of H = 0, a bounded model 

first describe general cascades then singular and bounded 
becomes singular, and its spectral exponent is entirely 

fractal models emphasizing their wavenumber spectra; finally, 
determined by p as in (3~). 

a cloud model with two distinct scaling regimes will be 
developed in one-, two-, and three-dimensional (ID, 2D, and 

3.2. Large- and Small-Scale Cloud Models: A lD- 
Case 

3D) geometries. 
Equations (4~) and (3~) suggest using bounded cascades to 

3.1. Cascades in General, Singular, and Bounded model large-scale fluctuations of LWC and singular cascades 

Models for small-scale fluctuations. This would allow us to reproduce 

Consider the standard cascade model with roots going back 
the observed power spectrum in (2). As a result, to simulate 

to L. F. Richardson [e.g., see Mandelbrot, 19771. Starting 
cloud liquid water, we need four parameters: plarge and Hlarge to 

with a homogeneous slab, transfer a fraction fi of the mass (cp) 
represent large-scale behavior, p small (ffsrna~~ = 0) to represent 

from one half to the other in a randomly chosen direction. 
small-scale behavior, and, finally, r*, the characteristic scale 

This is equivalent to multiplying the originally uniform 
separating the two scaling regimes. 

density field on either side by weights WI(‘) = l+ft. The same 
Let L be the outer scale of our model and (CJ) be the mean 

Then the local extinction at scale 
procedure is repeated recursively at ever smaller scales using 

extinction (density). 

fractions fi, multiplying the density at each subinterval by 
r*=L/2’lnrge, the smallest scale of the large-scale fluctuations, 

weights W;(‘) = Levi where i = 2, 3,... is the number of the 
is 

cascade step. This model is “microcanonically conserved,” %rge 

[Mandelbrot, 19741 since at each cascade step the total mass 
remains unchanged; that is, (Wi(+) + Wic-))/2 = 1. 

iTi = (ts) nW/‘), j=l,_. ,2”tarae, (W 
i=l 

If we take independently of cascade step i the fractions 
where qarge is the number of large-scale cascade steps. Since 

fi= I-2p, (34 
the bounded model is mass conserving, averaging oj at this 
scale (r*) gives exactly (o), 

or equivalently the multiplicative weights 

we have a multifractal “‘p-model,” originally proposed by 
Meneveau and Sreenivasan [1987]. The limit p + l/2 leads to 
a constant field, while p = 0 corresponds to randomly 
positioned Dirac &functions. So, p directly controls the 
degree of intermittency. This cascade model is a singular 
discontinuous one; as i + -, cp(x+r) decorrelates from q(x) if 
scale r + 0. As a result, its spectral exponent is always less 
than 1, namely [Meneveau and Sreenivasan, 19871, 

w/‘)= d+)= { ;;,-p) } (0 <p < 1/2), 

1 
2%rge 

(3b) ~ 1 “j= (0). 2”large t5b) 
j= I 

The spectral exponent of the large-scale fluctuation is given 
by (4~) and requires H = 0.31 to match the value in (2). 

For small scales we use fractal interpolation [Barnsley, 
19881. As an interpolator, we choose a simple p-model, which 
is completely defined by psmall and gives us &,,,,I < I. We have 

oil, z@@)~~,,” sj , j= ] , ,2n’We, kc ] , ,2”s”‘all, (5c) 

where ojk is the extinction coefficient at scale r = W2ntota’ with 

P(p) = 1 - log2[1+(1-2p)2] < 1. (3c) 
the total number of cascade steps ntotat = nlarge+n,,,ll, and 
consequently, the total number of points is 2ntota1. 

According to (2), this model is an appropriate candidate for the Figure 2a illustrates the wavenumber spectrum of the above 
small-scale regime of cloud LWC. 

A simple way to obtain p > 1 is to reduce the variance of the 
model, where nlarge = 6 and n,,,ll = 7. We clearly see two 
distinct scaling regimes similar to those in Figure 1. If we set 

multiplicative weights in (3b) at each cascade step. Taking the largest scale L = 300 m, then the scale-break r* = L/2”large 
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1D case 
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3D case 
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log2k 

= 4.7 m and the smallest scale ! = L/2nfotat = 0.04 m. The 
parameters remaining to be defined are the mean extinction 
coefficient (cr) and geometrical thickness h. We set (0) = 
43.3 km-t and h = 0.3 km, respectively; these correspond to 
typical marine SC clouds with mean optical depth (T) = 13. 
Setting (7) = 13 gives a range of optical depth Z] from 2 to 70, 
while ti has a range from 3 to 36; here T,, an d z are local 
optical depths at scales ,!J2ntota’ and Ll?“‘“‘$ respebtively. 

Another characteristic of the optical depth distribution is 
the gamma function parameter v = (~)2/((~2)-(~)2). It is 
widely used as a measure of the width of the pdf of z [Barker ef 
al., 19961. Our model yields v = 3, while the range of v for 
LWC measurements during SOCEX is from 2.3 to 3.9 [Davis et 
al.. 1998b]. 

To summarize, in this model our clouds are viewed as a 
vertically homogeneous stratus deck of thickness h where both 
upper and lower boundaries are horizontal planes. The 
extinction field depends only on one horizontal coordinate, 

O(XJ,Z) = o(x). 

Thus the local optical depth 

(6a) 

ZkY) = 
I 

h 

cs(x,p,z)dz = h G(X) = c(x) (6b) 
0 

also depends only on the x coordinate. 

3.3. Large- and Small-Scale Cloud Models: T w o 
20 Cases and One 30 Case 

The 2D and 3D cascade models are straightforward 
generalizations of a 1 D model (e.g., see Mnrshak et al. [ l995a] 
for the 2D bounded model details). Similar to the 1D model 
above. we cascade down to the characteristic scale Y* with 
parameters plarge and Htarge that represent a bounded cascade 
model; then we switch to a singular cascade model with ~~,,,~tt 

that corresponds to the small-scale fluctuations of the 
extinction field. 

Cascade models can be [Mandelbrot, I9741 either 
“microcanonical” (if the mean of their weights gives unity for 
each cascade step and each realization) or “canonical” (if the 
mean of their weights averaged over many realizations 
approaches unity). The microcanonical model is quite 

Figure 2. Wavenumber spectrum for cloud cascade models. 
A large-scale bounded cascade model [Cnhalan, 19941 with 
ptarge = 0.35 and Hlarge = 0.38, then a scale-break to a small- 
scale p-model [Meneveau and Sreenivasan, 19871 with ~~~~~~ = 
0.45 is shown. In theory, these values yield filarge(H) = 
min(2H, I} + 1 = 1.76 [Marshak et al., 19941 and Psmatt@) = 
-logz[ I-2p( l-p)] = 0.986, for large and small scales, 
respectively. However, because of finite number of cascade 
steps, the numerical values of spectral exponents are smaller. 
(a) A l3-cascade 1D model averaged over 500 realizations. 
Large scales are simulated by 6 cascades, small-scales behavior 
by 7 cascades. (b) An I l-cascade 2D microcanonical model. 
Large scales are simulated by a 6-cascade 2D bounded model 
[Marshak et a/., l995a], while small scales are simulated with 
a 5-cascade 2D p-model. The lowest line is an average over 
three realizations of the optical depth field defined in (8b). (c) 
A 7-cascade 3D canonical model. Large scales are simulated 
with a 3-cascade 3D bounded model, while small scales are 
simulated with a 4-cascade 3D p-model. Wavenumber spectrum 
is averaged over 27=128 2D fields. 
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Figure 3. Maximal and minimal optical depths versus scale 
for 2D cascade models. From 0 (homogeneous case) to 1 I 
cascade steps. Outer curves correspond to x-y variability, 
while inner curves correspond to x-z variability. At scale r* 
(4-5 m), each curve bifurcates into two branches which 
represent bounded and singular models. Note that optical 
depth curves for x-z variability defined by (8b) do not 
distinguish between bounded and singular models. The 
resolution of Landsat is indicated for comparison. 

restrictive, since it forces liquid water conservation at each 
point in space. Canonical models are less restrictive but only 

conserve cloud liquid water “in the long run.” Figures 2b 

(upper lines) and 2c illustrate energy spectra of 2D and 3D 
fields of extinction 0. Here the 2D cascade model was 
simulated microcanonical, while the 3D one was simulated 
canonical. Both energy spectra clearly show the scale-break 
separating two scaling regimes as observed in LWC data and 
described by (2). 

The same 2D cascade model is used to simulate two different 
extinction fields. The first one is vertically homogeneous 

with x-y variability; that is, 

O(X,Y,Z) = a(x.y) (74 

3 Natural Scales Radiative 
Smoothing 

I 

I 
h 

ZkY) = o(x,y,z)dz = ho(n,y) 
0 

0) 

The second model assumes variability in n-z directions, 

O(X,Y,Z) = 0b.z); @a) 

thus the local optical depth field will vary in only one 
horizontal direction, 

h 

Z(X,Y) = 
f 

o(x,y,z)dz = 
0 I 

h 

o(x,z)dz = T(X) (8b) 
0 

Note that the variability of optical depths T(X) defined in 
(6b) and (8b) are completely different. While z(x) defined in 
(6b) has a lognormal-type pdf and a rich structure with an 
autocorrelation function identical to that of the extinction 
coefficient, the local optical depth field defined in (8b) is a 
weakly variable function (see lower curves in Figure 8) with a 
Gaussian-type pdf. Its wavenumber spectrum is scale-invariant 
(Figure 2b) with spectral exponent Btarge&smatt > Ptarge; this is 
another indication on the weaker variability of z-fields in X-Z 
geometry than in x-y one. For the multifractal properties of 
these models, see Naud et al. [ 19961. 

To illustrate the range of optical depth for both 2D models, 
in Figure 3 we plotted ziiiax and ‘cd” of both z-fields defined by 
(7b) and (8b), respectively. With 11 cascade steps, the range 
of scale varies from L = 300 m down to P = 15 cm. For x-y 
variability, we clearly see the effect of the scale-break at 4-5 
m, while the range of optical depth for x-z variability remains 
almost unchanged. As expected from (3b) and (4b) for n-y 

geometry, a singular model, as an interpolator, substantially 
increases Tmax and only slightly decreases Z,in. In contrast to 

the integration (7b), which is just the product of extinction 
o(x,y) and h, the integration (8b) substantially tames the 
variability of cr(x,z); the range of z (dependent on realization) 
is, on average, between 9 and 18. 

The 3D model has similar scaling properties to that with x-z 
variability; its 2D optical depth field 

I 

h 

ZkY) = o(x,y,z)dz 
0 

is a weakly variable with no scale-break. 

(9) 

Mean Scale 
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Figure 4. Cascade models and characteristic scales. See text for explanations. 



19,562 MARSHAK HI AL: RADIATIVE EFFECTS OF SMALLSCALE VARIABILITY 

3.4. Discussion of Models 

Altogether we have four cloud models; each of them has 
extinction energy spectra similar to those of LWC measured 
during the SOCEX field program. However, the properties of 
the corresponding optical depth fields are quite different. 
While the extinction fields with no vertical variability (x and 
x-y geometries) have optical depth fields similar to those of 
extinction, the x-z and x-y-z geometries produce less variable 
optical depths. As a result, these two classes of models (with 
and without vertical variability) represent extreme cases rather 
than a realistic structure of cloud liquid water. Unfortunately, 
no data of small-scale variability of optical depth to check the 
validity of our models are expected in the near future. It is very 
likely that the real cloud structure is somewhere between these 
two extreme cases but closer to the cases with vertical 
fluctuations (for x-z extinction fields retrieved from the 
combined microwave radiometer and millimeter-wave radar 
measurements, see Zuidema and Evans [ 19981). 

Figure 4 schematically summarizes all four cloud models; 
number of cascade steps and scale ranges are added for 
convenience. Three natural and two artificial scales are 
indicated. For typical marine SC ((z) = 13 and h = 300 m), the 
natural scales are radiative smoothing scale (3hl(~)“~ = 
200--300 m [Marshak et al, 1995b]), mean mfp (hl(~) = 20-30 
m), and LWC scale-break (= 2-5 m). The artificial scales used 
in this paper are the Landsat pixel (= 30 m) and the resolution 
of Gerber probe (PVM) LWC data (0.04 m). Note that while 
outer scales L for both vertically homogeneous and variable 
models are the same, the smallest scales ! are quite different; 
they depend on the maximum number of cascade steps for 
multidimensional models (11 cascades for 2D models and 7 for 
3D models are defined by current limits of our computational 
power.) As a result, a ID model goes down to ! = 0.04 m while 
a 3D model only reaches ! = 1 m. 

Finally, as an example, microcanonical properties were 
prescribed to 1D and 2D models, while canonical properties 
were prescribed to 3D models. The only purpose of such an 
example is to show that the radiative transfer results reported 
in section 4 are valid for both microcanonical and canonical 
cases. However, a more physically justified 3D model will be 
microcanonical at large scales and canonical at small scales; 
this is more like what Shaw et al. [1998] see in their direct 
numerical simulation. 

Note that our model atmosphere consists of only one 
component: inhomogeneous clouds. For simplicity, we 

assume that no aerosol, no water vapor, and, finally, no 
surface reflectances are included into our “atmospheric” model. 

4. Results 

In this section we estimate the effects of sub-mfp variability 
on cloud radiation by comparing the reflectances of the above 
models with the ones that are scale-invariant down to the 
satellite grid-box (20-30 m) and homogeneous below this 
scale. Our focus will be on the reflectances at nadir, which is 
the viewing angle of the Landsat satellite. In all calculations 
solar zenith angles are 0” and 60°. 

4.1. X and X-Y Variabilities 

We start with estimating the effect of x-y variability at 
different scales. Let 

with N = (Ur)2; denote the average over the grid-size LxL nadir 
radiance Ii computed for the 2D cloud model with a pixel-size 
rxr; below scale r the model is assumed to be homogeneous. 
The scale r = L corresponds to the plane-parallel case. We will 
first compare the results of Independent Pixel Approximation 
(IPA) and Monte Carlo (MC). While the nadir radiance li 

computed by MC is a solution of the 3D radiative transfer 
equation [e.g., Marshak et al., 1995b], the IPA radiance 
[Cuhalnn et al., 19941 

N 

4&r) = i XII D(Ti) 
i= I 

(10b) 

is just the average over all radiances computed on a pixel-by- 
pixel basis using 1D radiative transfer. 

Figure 5a illustrates both 13&r) and Ip(L;r) as functions 
of scale r (L = 1000 m 5 r I2 m = a) for the two solar zenith 

100 10 1 
scale r (m) 

80 

60 

100 10 1 0.1 

scale r (m) 

Figure 5. The IPA and MC nadir radiances averaged over 
scale L versus scale r for x-y variability. Solar angles 8n = 0” 
and 60°, conservative scattering, Heney-Greenstein phase 
function with asymmetry parameter g = 0.843. Maximal and 
minimal values of optical depth versus scale illustrate the 
variability of cloud model. (a) Clouds are simulated by the 
bounded model only, from L = 1000 m down to e = 2 m. (b) 
Clouds are simulated by the bounded model from L = 100 m 
down to 4 m and the singular model from 4 m down to I = 20 
cm. 
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angles: O” and 60°. The difference between 3D and IPA 
illustrates the effect of net horizontal fluxes. It is called the 
IPA bias; for marine SC the bias is about l-2% [Cahalan et al., 

1994; Chambers et al. 1997b]. Note that for sun in zenith, 

IIP ’ I3D9 (lla) 
o eo=600; variable X variability 

F 
while for a slant illumination 

IIP < 13D. (1 lb) 

The inequality (11 a) has been theoretically justified by Davis 

[1992]; for Landsat-derived cloud fields, both cases are 
discussed by Chambers et al. [ 1997b]. 

The values z,,,(r) and T,i”(r) are scale-dependent maximal 
and minimal optical depths, respectively. They represent 
scales r from L = 1000 m down to ! = 2 m; hence for these 
scales, the bounded model alone is sufficient to simulate the 
variability of cloud fields. The direct consequence of the 

“boundnesness” (Tmax(r) < -) is the saturation of the nadir 
radiance 13D(L;r) for scales r below photon mean mfp, i.e., for 
r < I/(o) (= 20-30 m). To conclude, weak sub-mfp variability 
does not affect the radiances averaged over scales equal to or 
larger than photon mfp. 

The conclusion will be different if we compare IjD(L;r) and 
IIp(L;r) for r running from L = 100 m down to JJ = 0.2 m. In this 

case, the small-scale variability is simulated with a singular 
model (Figure 5b). First of all, note that the model becomes 
unbounded. As a result of strong small-scale fluctuations of 
optical depth, the radiances keep decreasing with the increase 
of small-scale variability. However, the decrease of the IPA 
radiances based on inequality (1) is much faster than the MC 
ones. The inequality (1 I a) does not work anymore; for any 
solar angle, MC radiances are larger than their IPA 
counterparts. 
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Figure 6. Relative biases for x-y variability. Illumination 
and scattering conditions are the same as in Figure 5. Biases 
between models with and without sub-mfp x-y variability for 
16 Landsat-size (32x32 m2) pixels with optical depths 
simulated by a two-cascade 2D bounded model. Nadir radiances 
calculated for a model with no variability below 32 m are added 
for reference. 
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Figure 7. The x variabilities. Illumination and scattering 
conditions are the same as in Figure 5. Nadir radiances with 
and without sub-mfp 1D variability for the 16 pixels (= 20 m) 
are shown. Optical depth fields (both homogeneous and 
variable down to ! = 4 cm) are added for reference. 

NowletL=128m,andrrunfromLdowntoP=6cmasin 
Figure 4 (a five cascades bounded model from 128 to 4 m 
interpolated by a six cascades singular model from 4 m to 6 
cm). Altogether we have 42 = 16 Landsat-size (32x32 m2) 
pixels as represented by a two cascade steps bounded model. 
Figure 6 illustrates relative biases, 

II - ; 1: I.1 
B= 100 

I 
l-l 1 (%), (12) 

for all 16 pixels and two solar angles. Here I is the nadir 
radiance calculated for a bounded model with no variability 
below 32 m; Ii (i = l,.. .,n) are the nadir radiances for the 
smallest resolution of ! = 6 cm and n = (29)2 = 262144 since 
nine cascade steps are needed to go from 6 cm up to 32 m. We 
see that while the average bias is around 3%, for some Landsat- 
size pixels, B can exceed 5%. As expected, the bias is larger 
for zenith sun than for a slant illumination. Finally, a larger 
bias corresponds to pixels with smaller optical depths; this is 
understandable since the later case is closer to the broken cloud 
situation, where more radiation is transmitted through clouds 
and function I(T) has a larger gradient. 

For better visualization, in Figure 7 we plotted nadir 
radiances computed for a cloud field with 1D variability only. 
The optical depth fields are added for reference. We see that the 
effects of x variability is similar to x-y variability, though it 
is less pronounced. For example, the averaged bias between 
homogeneous 20 m pixels and variable down to P = 4 cm is 
only around 1%. As in the x-y case, the bias is larger for 
zenith sun and small optical depths. Note that in the 1D case 
we simulated horizontal variability from L = 300 m down to 
C = 4 cm using 13 cascades. 

The effect of sub-mfp variability on cloud albedo [Cahalan, 

19891 is different from the effect on nadir radiances. Using the 
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singular cascade model (see (3a)-(3c)), Cahalan found that the 
mean albedo becomes insensitive to variations in optical 
depth on scales smaller than the photon mfp. Our numerical 
simulations with more realistic cloud models confirm this 
result: the average smallest-scale (! = 0.04 m) relative albedo 
bias does not exceed 0.5%. Averaging over 20-30 m brings 
the difference to negligibly small 0.1%. 

For comparison, in our calculations (x variability only, 
2t3 = 8192 pixels and P = 4 cm) the level of pixel-by-pixel 
Monte Carlo noise was 0.9% for fluxes and 1.5% for radiances. 
The average over 20 m (500 pixels) fluxes had only 0.04% 
noise, while radiances had 0.07%. The level of Monte Carlo 
noise for the case of x-y variability (22x1t = 4 IO7 pixels and 
I = 6.25 cm) averaged over 32x32 m2 was similar (= 0.05%), 
while, on the pixel-by-pixel level, it was 5.2% for fluxes and 
8.4% for radiances. 

4.2. X-Z and X-Y-Z Variabilities 

In contrast to the only horizontal variability, X-Z and x-y-z 
cases assume similar fluctuation of the extinction coefficient 
in both horizontal and vertical directions. As a result, the 
horizontal pixel-by-pixel variability of optical thicknesses 
r(x) or r(x,y) defined respectively by integrals (8b) or (9) is 
much weaker than the variability of their extinction 
counterparts. The lower curve in Figure 8 illustrates ‘r(x) for a 
homogeneous below photon mfp a(x,z) (4 cascades) and a 
variable down to Z = 15 cm extinction a(x,z) (1 1 cascades). 

We see that the horizontal distribution of optical depth has not 
been changed much with the increasing variability of o(x,z) 
(see Figure 3 for illustration of T,,,). 

The effect of sub-mfp variability of o(x,z) on I(x) is 
minimal. The average bias B, defined in (12) with n = 27 = 
128 and Ii computed at I5 cm resolution, is less than 0.5% 
(which is much larger than the level of Monte Carlo noise). 
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Figure 8. The x-z variability. Scattering conditions are the 
same as in Figure 5. Nadir radiances with and without sub-mfp 
variability in o(x,z) for 16 pixels (= 20 m) are shown. Optical 
depths (both homogeneous and variable down to e = 15 cm) are 
added for reference. 
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Figure 9. The x-y-z variability. Scattering conditions are 
the same as in Figure 5. Solar angle 9u = O”. Albedos R&Q) 
and nadir radiances Ijo(L;r) are averaged over three 
realizations. Scale r changes from L = 128 m down to I! = 1 m. 
Scale-dependent maximal and minimal values of a single 
realization of @x,y,z) are shown. 

This bias remains unchanged even if the bounded model is 
extrapolated down to the smallest scale. In contrast to x-y 
variability, the bias is independent on either solar position or 
optical depth. 

The effect of x-y-z variability on the radiation reflected from 
clouds is similar to that of x-z variability. However, since our 
3D cascade mode1 is canonical and does not conserve liquid 
water for each realization, the values of both radiances and 
albedos computed for models with different cascade steps have 
greater scatter than their microcanonical counterparts. The 
bold circles and squares in Figure 9 are the values of albedo 
R3D(L;r) and nadir radiance Z&L;‘), respectively; Z&L;r) is 
defined in (10a) with L = 128 m, while R3&L;r) is its albedo 
counterpart. Both RJD(L;r) and 13&;r) are averaged over three 
independent realizations of a cloud model and plotted versus 
scale r: from L = 128 m (plane-parallel case) down to e = 1 m 
(seven cascade steps). Even after averaging over three 
realizations. dots are still scattered. Nevertheless, we can see 
that reflected radiation levels off below photon mfp; therefore 
sub-mfp variability of the extinction coefficient (see (J,,, and 

B,in curves) affects neither albedos nor radiances. 
Finally, to make our analysis more robust, for 15 

independent realizations of a 3D cloud model with 
homogeneous and variable structures below 32 m, we test 
statistically the hypothesis of changing the 32-m-grid 
radiances as a result of sub-mfp variability in cloud structure. 
So the hypothesis Ho states that the average over satellite grid 
nadir radiance is not changed with sub-mfp variability in cloud 

liquid water; that is, there is no bias. The alternative 
hypothesis HI reads that there is a bias. It is easy to check 
that the change is insignificant at 5% level and [e.g., Korn and 

Korn, 19681, 

t* = 
(Ihorn) - (lvar> 

s(2/n)“2 
= 0.19 < t = 2.06, 

where (fhom) and (I,,,) are averaged over n = 15 realizations 
and 32-m-grid radiances, s is a joint standard deviation, and 
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2.06 is the value of t for the t-distribution with 28 degrees of 
freedom at 95% confidence level. Thus hypothesis Ho is 
confidently retained. 

The validity of the hypothesis Ho is true not only for 
conservative scattering but also for absorbing wavelength. 
Figure IO shows a scatter plot of nadir radiances for the 
variable down to 1 m cloud structure versus those of 
homogeneous below 32 m structures. We used the same I5 
independent realizations of a 3D cloud model as for the 
statistical test above for each of six different single-scattering 
albedos from the conservative case (a0 = 1.00) down to 
ciJo = 0.95. Concentrated along the diagonal, they justify 
visually the validity of the Ho-hypothesis for absorbing 
satellite channels. 

To summarize, vertical variability of the extinction field 
o(x,y,z) substantially smoothes pixel-by-pixel fluctuations of 
cloud optical thickness r(x,y). As a result, the increasing 
strong variability of a(x,y,z) down to centimeter-scales does 
not decrease the radiances averaged over satellite-size grids not 
only for conservative scattering but also for absorbing 
wavelengths. 

5. Discussion 

In ID radiative transfer (i.e., horizontally homogeneous 
plane-parallel media), the basic transport phenomenology is 
determined by optical depth T: the dominant process will be 
ballistic motion if r << I and photon diffusion if r >> 1. In a 
recent study, Davis et al. [1998a] propose the norm of gradient 
of the inverse extinction, 

x(x) = IV& 1, (14) 

as a diagnostic tool for the prediction of strong or weak 3D 
effects around point x. Like z, x is a nondimensional 
quantity. 

0.6 c 

0.5 

Q 0.4 

rr 

2 

s 
> 

0.3 

0.2 

0.1 4 
1.1 

0 oo=l.ooo 0 oo=o.999 

0 oo=o.995 

L---l 
x wo=o.990 

+ oo=0.980 

A w~=o.950 

/b 
0.2 0.3 0.4 0.5 I 

J 
1.6 

homogeneous 

Figure 10. Fifteen independent realizations for a x-y-z 
geometry. Illumination is the same as in Figure 9. Nadir 
radiances I3D(L;r) computed for six different single scattering 
albedos liJo (1.000, 0.999, 0.995, 0.99, 0.98, and 0.95) and 
two different cloud structures (homogeneous below 32-m-cube 
and variable down to l-m-cube) scatter-plotted against each 
other. The results are averaged over 128x128 m2 grid. 

I. If x << I, we have “slow” variability, where l/o(x) varies 

little over a typical photon free path. In this case, we 
anticipate relatively weak 3D effects that may possibly be 
modeled by approximate methods that are based on ID theory 
[e.g., Cahalan et al., 1994; Galinsky and Ramanathan, 19981. 
This is the “linear mixing” regime in the theory of stochastic 
radiative transfer in binary media [Avaste and Vuinikko, 1974; 
Titov, 1990; Malvagi et al., 19931. 
2. If x >> I, we have “fast” variability, where many values of 

extinction are sampled over a typical photon free path. This 
case is similar to a homogeneous medium with extinction equal 
to the average because the cumulative optical distance can be 
approximated by mean extinction times the path length. This 
is called the “atomistic mixture” regime in stochastic radiative 
transfer. 

In the random cloud models used in this paper, we go from 
the former extreme (at large scales) to the latter regime (at 
small scales), superposed onto the “slow” regime. That is why 
we find relatively small radiative effects of sub-mfp variability 
in simulated cloud liquid water. 

Another common feature of these two extremes is that mfp 
is a well-defined quantity. The rigorous definition of photon 
mfp at point x0 in direction Q is 

t 
mfiJ(xo.R) = 

r 
t o[x(t)l exp(- o[x(t’)] dt’) dt (15) 

0 I 0 

where x(t) =x0 + tR. In the case of x >> I, mfp is close to the 
inverse of mean extinction obtained directly from average 
column liquid water. In cases where x << I, extinction 
fluctuates relatively slowly around a well-defined mean; so 
global mean extinction is still a very relevant quantity. In 
particular, it can be used to define a mfp, or at least a global 
mean mfp, without any detailed knowledge of the radiative 

transfer. Because of the slow variability, this will be a good 
approximation to the average of (15) over all x0 and all 
directions R. Indeed in our calculations, the difference 

between mean values of photon mfp for homogeneous and 
inhomogeneous cloud structures are less than 0.5% for the 
large-scale fluctuations (x << I) and less than 1% for small- 
scale fluctuations (2 >> I). 

Returning to (l4), strong 3D effects are anticipated only in 
the intermediate regime where x = I. In this case, we can 
predict strong horizontal fluxes and strong departures from 
exponential free-path distributions. As a result, along with 
the mean in (l5), all other statistical moments are required to 
describe photon transport. 

As a concrete example of x = I in meteorology, consider a 
broken cloud field with around 50/50 cover. The 
Rayleighlaerosol atmosphere in which the clouds are embedded 
is optically thin; consequently, the “out-of-cloud” mfp can be 
tens to hundreds of kilometers which is several times the scale- 
height of the atmosphere. So, in sharp contrast with photons 
“rattling” around (technically “diffusing”) inside the clouds, 
they cover great distances in cloud-cloud, cloud-ground. cloud- 
space, and ground-space interactions. These long paths will 
dominate any statistically meaningful mean. In broken 
clouds, the mfp is therefore at least as large as the intercloud 
gaps, which can easily exceed the cloud size. Consequently, 
all variability that is internal to the clouds is arguably sub- 
mfp. It is important to emphasize this point as a limitation of 
the present study. This study applies only to stratiform 
clouds, not so much because the 4-cm resolution data were 
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collected in marine SC but because photon mfp is a key 

radiative transfer parameter only in stratus. 
The above photon propagation scenario of incloud diffusion 

episodes separated by long ballistic intercloud jumps is the 
starting point of Davis and Marsh&s [I9971 Levy-flight 
model of atmospheric radiation transport. This model, which 
replaces the standard exponential free path distribution with 
power-law counterparts, has received some empirical support 
in recent measurements of total photon path using 02 A-band 
spectroscopy [Pfeilsficker, 19981. 

6. Summary 

Because of the lack of cloud liquid water measurements 
below spatial scales of a photon mfp (= 20-30 m in this 
paper), the problem of how sub-mfp structure affects the 
interpretation of high-resolution satellite data has been 
impossible even to address. Thus 3D radiative transfer grid 
boxes were always assumed homogeneous. Recently, 
however, the new Particulate Volume Monitor (PVM) 
instrument [Gerber et al., 19941 was able to measure cloud 
LWC in marine boundary-layer stratus at unprecedented 4-cm 
resolution. 

Davis et nl. [1998b] studied this marine SC data using a 
scale-by-scale analysis; they found two distinct scaling 

regimes separated at a characteristic scale of 2-5 m. While the 
large-scale behavior was similar to previously analyzed low 
resolution LWC data with the spectral exponent Ptarge = 1.5, 
the small-scale fluctuations showed a much larger variability 
with spectral exponent &,,a)t 5 I. A careful analysis and 
simulation of the PVM ruled out the possibility that this scale 
break is an artifact. 

This new understanding of sub-mfp variability of cloud 
liquid water made it possible to generate credible cloud LWC 
models down to centimeter-scales. Since no high resolution 
data of optical depth is available, we focused on simulating the 
extinction field o(x,y,z). As a result, we generated four models 
of 0: with x, x-y, X-Z, and x-y-z variabilities. Each of these 
models uses bounded cascades [Cahafan, I9941 for the large 
scales, which are then interpolated to small scales using a 
singular p-model [Meneveau and Sreenivasan, 19871 in order 
to simulate the wavenumber spectrum measured by the PVM. 
The x and x-y variable models do not have vertical 
fluctuations. Since the pdf of (3 has a long “tail” (roughly 
lognormal), the same holds for r. Integrated over z, the X-Z 
and x-y-z models have far less intermittency in the optical 
depth fields; their pdfs do not have long “tails.” 

To estimate the effect of sub-mfp variability on 3D radiative 
transfer through stratus clouds, we compared the results of 
Monte Carlo computations for several homogeneous “30-m 
cubes” to their inhomogeneous counterparts, resolved down to 
centimeter-scales. We found that for vertically homogeneous 
models (x and x-y variabilities), the horizontal sub-mfp 
fluctuations of optical depth decrease reflected nadir radiance 
by 2-3% on average; for some 30-m pixels, with small optical 
depths, the decrease can exceed 5%. However, as soon as 
vertical fluctuations are added (x-z and x-y-z variabilities), the 
effect of sub-mfp inhomogeneity becomes insignificant, with 
the average bias less than 0.5%. The relative small magnitude 
of these effects is explained by Davis et al.‘s [1998a] genera1 
phenomenology of 3D radiative transfer. 

On the basis of our 3D radiative transfer simulations, stratus 

cloud models that assume homogeneity below a photon mfp 

(20-30 m) are quite appropriate for the interpretation of the 

high-resolution satellite data, and realistic sub-mfp structure in 
liquid water does not matter much. However, if we were to 
measure reflected radiation with centimeter- to meter-scale 
resolution, the retrieval of cloud structure at that resolution 
would be nearly hopeless. 

The results of this paper are restricted to overcast one-layer 
clouds with flat cloud top and cloud bottom, and relatively 
small geometrical thickness of 300 m. To extend this study to 
broken and/or multilayered clouds systems with variable cloud 
top and different geometrical thicknesses, more data, analyses, 

models, and computations are required. 
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